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Abstract

Does the hypothesis of preference for (group) efficiency account for subjects’ over-
contribution in public good games or is this mostly noise? Using a boundedly rational
equilibrium approach, we aim at estimating the relative importance of efficiency con-
cerns relative to a noise argument. By using data from a VCM experiment with
heterogeneous endowments and asymmetric information, we estimate a quantal re-
sponse equilibrium (QRE) extension of a model in which subjects have preference for
group efficiency. Under the hypothesis of homogeneous population most of the over-
contribution seems to be explained by noisy behaviors. A different picture emerges
when we introduce cross-subject heterogeneity in concerns for group efficiency. In this
case, the majority of the subjects makes contributions that are compatible with the
hypothesis of preference for (group) efficiency. A formal likelihood-ratio test strongly
rejects the models not allowing for noise in contributions and homogeneous subjects
for the more general QRE extension with heterogeneous preferences for (group) effi-
ciency coupled with noise in subjects’ behavior.
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1 Introduction

Subjects contribute to public goods even in situations in which it is individually op-
timal to free-ride. Amongst the experimental paradigms, over-contribution in linear
public good experiments represents one of the best documented and most studied
regularities. In order to explain this evidence, social scientists have elaborated a large
number of behavioral explanations that are based on refinements of the hypothesis
of “other-regarding preferences”: reciprocity (Sugden, 1984; Hollander, 1990; Falk
and Fischbacher, 2006; Fischbacher et al., 2001), altruism and spitefulness (Levine,
1998; Andreoni 1989; Andreoni, 1990), commitment and Kantianism (Laffont, 1975;
Bordignon, 1990), norm compliance (Bernasconi et al., 2010), and team-thinking
(Bacharach et al., 2006; Sugden, 2003; Cookson, 2000).

Recently, the hypothesis of preference for (group) efficiency has been invoked
as an additional psychological explanation for agents’ attitude to freely engage in
pro-social behaviors. Indeed, there is evidence showing that experimental subjects
often make choices that increase group efficiency, even at the cost of sacrificing their
own payoff (Charness and Rabin, 2002; Engelman and Strobel, 2004). Corazzini
et al. (2010) use this behavioral hypothesis to explain evidence from linear pub-
lic good experiments based on prizes (a lottery, a first price all pay auction and a
voluntary contribution mechanism used as a benchmark) and characterized by en-
dowment heterogeneity and incomplete information on the distribution of incomes.
In particular, they present a simple model in which subjects bear psychological costs
from contributing less than what is efficient for the group. The main theoretical
prediction of their model when applied to linear public good experiments is that
the equilibrium contribution of a subject is increasing in both her endowment and
the weight attached to the psychological costs of (group-)inefficient contributions in
the utility function. The authors show that this model is capable of accounting for
over-contribution as observed in their experiment as well as evidence reported by
related studies.

However, as argued by several scholars, rather than being related to subjects’
kindness, over-contribution may reflect their natural propensity to make errors.
There are several experimental studies (Andreoni, 1995; Palfrey and Prisbrey, 1996,
1997; Brandts and Schram, 2001; Houser and Kurzban, 2002; Goeree et al., 2002)
that seek to disentangle other-regarding preferences from noisy behaviors by running
ad hoc variants of the linear public good game. A general finding in these papers
is that “warm-glow effects and random error played both important and significant
roles” (Palfrey and Prisbrey, 1997, p. 842) in explaining over-contribution.

In a similar vein, one may wonder about the relative importance of noise and
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preference for efficiency in explaining the experimental evidence. In order to tackle
this question, we build and estimate a quantal response equilibrium (henceforth,
QRE; McKelvey and Palfrey, 1995) extension of the model presented by Corazzini
et al. (2010). This boundedly rational model formally incorporates both preference
for efficiency and the noise arguments. Moreover, in contrast to previous studies
that aim to find the relative importance of error and other-regarding preferences,
the QRE approach explictly applies an equilibrium analysis.

There are several alternative theoretical frameworks that can be used to model
noisy behaviors (bounded rationality) and explain experimental evidence in strategic
games. Two examples are the “level-k” model (e.g. Stahl and Wilson, 1995; Ho et
al., 1998; Stahl and Haruvy, 2008) and (reinforcement) learning models (e.g. Erev
and Roth, 1998). In the “level-k” model of iterated dominance, “level-0” subjects
choose an action randomly and with equal probability over the set of possible pure
strategies while “level-k” subjects choose the action that represents the best response
against level-(k−1) subjects. Level-k models have been used to explain experimental
results in games in which other-regarding preferences do not play any role, such as
p-Beauty contests and other constant sum game. Since in public good games there
is a strictly dominant strategy of no contribution, unless other-regarding preferences
are explicitly assumed, “level-k” models do not apply. Similar arguments apply to
learning models . In the basic setting, each subject takes her initial choice randomly
and with equal probability over the set of possible strategies. As repetition takes
place, strategies that turn out to be more profitable are chosen with higher proba-
bility. Thus, unless other-regarding preferences are explicitly incorporated into the
utility function, repetition leads to the Nash Equilibrium of no contribution.

The QRE approach has the advantage that even in the absence of other-regarding
preferences it can account for over-contribution in equilibrium. Moreover, we can use
the model to assess the relative importance of noise and efficiency concerns.

For our QRE approach, we start from a benchmark model in which the population
is homogeneous in both concerns for (group) efficiency and the noise parameter.
Then, we allow for heterogeneity across subjects by assuming the population to
be partitioned into subgroups with the same noise parameters but distinct in the
preference for (group) efficiency.

In line with our theoretical setting, we use data from the VCM sessions of Corazz-
ini et al. (2010) to compare estimates from the model not accounting for noise in
subjects’ behaviors with those from the QRE extension. For the QRE model with
a homogeneous population, we find that subjects’ over-contribution is entirely ex-
plained by noise in behaviors, with the estimated parameter of concerns for (group)
efficiency being zero. A formal likelihood ratio test strongly rejects the specifica-
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tion not allowing for randomness in contributions in favor of the more general QRE
model. A different picture emerges in the QRE model with heterogeneous subjects.
In the model with two sub-groups, the probability of a subject being associated with
a strictly positive degree of preference for (group) efficiency is approximately one
third. This probability increases to 59% when we add a third subgroup character-
ized by an even higher efficiency concern. A formal likelihood ratio test confirms
the supremacy of the QRE model with three subgroups over the other specifications.
These results are robust to learning processes over repetitions. Indeed, estimates
remain qualitatively unchanged when we replicate our analysis on the last 25% of
the experimental rounds. The rest of this paper is structured as follows. In section
2, we describe the experimental setting of Corazzini et al. (2010). In section 3, we
present the QRE extension of the model based on the preference for (group) effi-
ciency hypothesis. Section 4 reports results from our statistical analysis. Section 5
concludes.

2 The Experiment

Our statistical analysis is based on the experimental results reported by Corazzini
et al. (2010). More specifically, we use data from three sessions of a voluntary
contribution mechanism with endowment heterogeneity and incomplete information.
Each session consisted of 20 rounds and involved 16 subjects. At the beginning of
each session, each subject was randomly and anonymously assigned an endowment
of either 120, 160, 200, or 240 tokens. The endowment assigned at the beginning
was kept constant throughout the 20 rounds of the experiment and this was common
knowledge. The experiment was run in a strangers condition (Andreoni, 1988) such
that, at the beginning of each round, subjects were randomly and anonymously
rematched in groups of four players. Thus, in each round subjects made their choices
under incomplete information on the distribution of the endowments in their group.
In each round, every subject had to allocate her endowment between an individual
and a group account. While subjects allocated tokens to the accounts, payoff were
expressed in points. The individual account implied a private benefit such that for
each token a subject allocated to the individual account, she received two points.
On the other hand, tokens in the group account generated monetary returns to each
of the group members. In particular, each subject received one point for each token
allocated by her, or by any other member of her group to the group account. Thus,
the marginal per capita return used in the experiment was 0.5. At the beginning of
each round, the experimenter exogenously allocated 120 tokens to the group account,
independently of subjects’ choices, thus implying 120 extra points for each group
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member. At the end of each round, subjects received information about their payoffs.
Points were converted to euros using an exchange rate of 1000 points per euro.
Subjects, mainly undergraduate students of economics, earned 12.25 euros on average
for sessions lasting about 50 minutes. The experiment took place in May 2006 in
the Experimental Economics Laboratory of the University of Milan Bicocca and was
computerized using the z-Tree software (Fischbacher, 2007).

The main features of anonymity and random rematching introduced by Corazzini
et al. (2010) in their experimental setting, narrow the relevance of some“traditional”
behavioral hypotheses used to explain subjects over-contribution. For instance, they
preclude subjects’ possibility to reciprocate group members (un)kind contributions
(Rabin, 1993). Moreover, under these conditions, subjects with preferences for equal-
ity cannot make compensating contributions to reduce (dis)advantageous inequality
(Fehr and Schmidt, 1999, Bolton Ockenfels, 2000). Rather, the hypothesis of pref-
erence for (group) efficiency as a particular form of warm-glow (Andreoni 1989; An-
dreoni, 1990) appears a more plausible justification.

3 Theoretical Predictions and Estimation Proce-

dure

Consider a finite set of subjects P = {1, 2, ..., p}. In a generic round, subject i ∈ P ,
with endowment wi ∈ N+ contributes gi to the group account, with gi ∈ N+ and
0 ≤ gi ≤ wi. The monetary payoff of subject i who contributes gi in a round is given
by

πi(wi, gi) = 2(wi − gi) + 120 + gi +G−i, (1)

where G−i is the sum of the contributions of group members other than i in that
round. Given equation (1), if subjects’ utility only depends on the monetary payoff,
zero contribution is the unique Nash equilibrium of each round. In order to explain
the positive contributions observed in their experiment, Corazzini et al. (2010) as-
sume that subjects suffer psychological costs if they contribute less than what is
optimal for the group. In particular, psychological costs are introduced as a con-
vex quadratic function of the difference between a subject’s endowment (i.e. the
social optimum) and her contribution. In the VCM, player i’s (psychological) utility
function is given by:

ui(wi, gi, αi) = πi(wi, gi)− αi
(wi − gi)2

wi
(2)
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where αi is a non-negative and finite parameter measuring the weight attached to the

psychological costs, (wi−gi)2
wi

, in the utility function. Notice that psychological costs
are increasing in the difference between a subject’s endowment and her contribution.
Under these assumptions, in each round, there is a unique Nash equilibrium in which
individual i contributes:

gNEi =
2αi − 1

2αi
wi (3)

The higher the value of αi, the higher the equilibrium contribution of subject i
is. The average relative contribution, gi/wi, observed by Corazzini et al. (2010) in
their VCM sessions is 22%. By calibrating equation (3) accordingly the authors find
an average α = 0.64.

Following McKelvey and Palfrey (1995), we introduce noisy decision-making and
consider a Logit Quantal Response extension of (2). In particular, we assume sub-
jects to choose their contributions randomly according to a logistic quantal response
function. Namely, for a given endowment, wi, and contributions of the other group
members, G−i, the probability that subject i contributes gi is given by

qi(wi, gi, αi, µ) =
exp

{
ui(wi,gi,αi)

µ

}
wi∑
gj=0

exp
{
ui(wi,gj ,αi)

µ

} (4)

where µ ∈ <+ is a noise parameter reflecting a subject’s capacity of noticing differ-
ences in expected payoffs.

Therefore each subject i is associated with a wi-dimenstional vector q
i
(wi,gi, αi, µ)

containing a value of qi(wi, gi, αi, µ) for each possible contribution level gi ∈ g
i
≡

{0, . . . , wi}. Let
{
q
i
(wi,gi, αi, µ)

}
i∈P

be the system including q
i
(wi,gi, αi, µ), ∀i ∈

P . Notice that since others’ contribution, G−i, enters the r.h.s of the system, others’

qi will also enter the r.h.s. A fixed point of
{
q
i
(wi,gi, αi, µ)

}
i∈P

is, hence, a Quantal

Response Equilibrium (QRE),
{
qQRE
i

(wi,gi, αi, µ)
}
i∈P

.

In equilibrium, the noise parameter µ reflects the dispersion of subjects’ contri-
butions around the Nash prediction expressed by equation (3). The higher µ, the
higher the dispersion of contributions. As µ tends to infinity, contributions are ran-
domly drawn from a uniform distribution defined over [0, wi]. On the other hand, if
µ is equal to 0, the equilibrium contribution collapses to the Nash equilibrium.1

1More specifically, for each subject i equilibrium contributions converge to qi(wi, g
NE
i , αi, 0) = 1
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In this framework, we use data from Corazzini et al. (2010) to estimate α and µ,
jointly. We proceed as follows. Our initial analysis is conducted by using all rounds
(n = 20) and assuming the population to be homogeneous in both α and µ. This
gives us a benchmark that can be directly compared with the results reported by
Corazzini et al. (2010). In our estimation procedure, we use a likelihood function that
assumes each subject’s contributions to be drawn from a multinomial distribution.
That is:

Li(wi,gi, α, µ) =
n!

wi∏
gj=0

n(gj)!

wi∏
gk=0

qQREi (wi, gk, α, µ)n(gk) (5)

where n(gj) is the number of times subject i contributed gj over the n rounds of
the experiment, and similarly for n(gk). The contribution of each person to the log-
likelihood is the log of expression (5). The Maximum Likelihood procedure consists of
finding the non-negative values of µ and α (and corresponding QRE) that maximize
the summation of the log-likelihood function evaluated at the experimental data.
In other words, we calculate the multinomial probability of the observed data by
restricting the theoretical probabilities to QRE probabilities only.

We then extend our analysis to allow for cross-subject heterogeneity. In particu-
lar, we generalize the QRE model above by assuming the population to be partitioned
into S subgroups that are characterized by the same µ but different α. In this case,
the likelihood function becomes:

Li(wi,gi, α1, α2, ..., αS, γ1, γ2, ..., γS, µ) =
S∑
s=1

γs
n!

wi∏
gj=0

n(gj)!

wi∏
gk=0

qQREi (wi, gk, αs, µ)n(gk)

(6)

where γ1, γ2, ..., γS, with
S∑
s=1

γs = 1, are the probabilities for agent i belonging to

the sub-group associated with α1, α2, ..., αS, respectively. This allows us to estimate
the value of µ for the whole population, the value of α1, α2, ..., αS for the S sub-
groups and the corresponding probabilities, γ1, γ2, ..., γS. For identification purposes
we impose that αs ≤ αs+1. The introduction of one group at a time accompanied by
a corresponding likelihood-ratio test allows us to determine the number of α−groups
that can be statistically identified from the original data. In the following statistical

and qi(wi, gi, αi, 0) = 0,∀gi 6= gNE
i .
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analysis, estimates account for potential dependency of subject’s contributions across
rounds. Confidence intervals at the 0.01 level are provided using the inversion of the
likelihood-ratio statistic, subject to parameter constraints, in line with Cook and
Weisberg (1990), Cox and Hinkley (1974) and Murphy(1995).

4 Results

Using data from the 20 rounds of the experiment, table (1) reports average contri-
butions (both by endowment type and overall) observed in the experiment, average
contributions as predicted by the model not accounting for noise in subjects’ contribu-
tions and estimates as well as average contributions from different parameterizations
of the Logit Quantal Response extension of the model. In particular, specification
(1) refers to a version of the model in which both α and µ are constrained to be
equal to benchmark values based on Corazzini et al. (2010). Under this parameteri-
zation, α is fixed to the value computed by calibrating equation (3) on the original
experimental data, 0.64, while µ is constrained to 12.

[Table 1 about here]

As shown by the table, specification (1) closely replicates predictions of the orig-
inal model presented by Corazzini et al. (2010) not accounting for noise in subjects’
contributions. In specification (2), α is fixed to 0.64, while µ is estimated by using
equation (4). The value of µ increases substantially with respect to the benchmark
value used in specification (1). A likelihood-ratio test strongly rejects specification
(1) that imposes restrictions on the values of both α and µ in favor of specification
(2) in which µ can freely vary on <+ (LR = 10460.33; Pr {χ2(1) > LR} < 0.01).
However, if we compare the predicted average contributions of the two specifica-
tions, we find that specification (1) better approximates the original experimental
data. This is because a higher value of the noise parameter spread the distributions
of contributions around the mean. Therefore even with mean contributions further
from the data (induced by the fixed value of α) the spread induced by the noise
parameter in specification (2) produces a better fit. This highlights the importance
of taking into account not only the average (point) predictions, but also the spread
around it. It also suggests that allowing α to vary can improve fit.

2Appendix A shows the Maximum Likelihood estimation value of α when we vary µ. It is
possible to see that for a large range of values of µ this value is close to 0.64. We choose µ = 1 as a
sufficiently low value in which the estimated α is close 0.64 and thus provide a noisy version of the
base model which can be used for statistical tests.
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In specification (3), α and µ are jointly estimated using equation (5), subject to
α ≥ 0. If both parameters can freely vary over <+, α reduces to zero and µ reaches
a value that is higher than what was obtained in specification (2). As confirmed by
a likelihood-ratio test, specification (3) fits the experimental data better than both
specification (1) (LR = 11086.54; Pr {χ2(2) > LR} < 0.01) and specification (2)
(LR = 626.21; Pr {χ2(1) > LR} < 0.01). Thus, under the maintained assumption
of homogeneity our estimates suggest that contributions are better explained by
randomness in subjects’ behavior rather than by concerns for efficiency.

In order to control for learning effects, we replicate our analysis using the last
five rounds only.

[Table 2 about here]

Consistent with a learning argument, in both specifications (2) and (3), the values
of µ are substantially lower than the corresponding estimates in table (1). Thus,
repetition reduces randomness in subjects’ contributions. The main results presented
above are confirmed by our analysis on the last five periods. Looking at specification
(3), in the model with no constraints on the parameters, the estimated value of α
again drops to 0. Also, according to a likelihood-ratio test, specification (3) explains
the data better than both specifications (1) (LR = 1578.83; Pr {χ2(2) > LR} < 0.01)
and (2) (LR = 203.85; Pr {χ2(1) > LR} < 0.01)

These results seem to reject the preference for (group) efficiency hypothesis in
favor of pure randomness in subjects’ contributions. A different picture emerges
when we allow for cross-subject heterogeneity, however. In table (3) we drop the
assumed homogeneity. In particular, we consider two models with heterogeneous
subjects: the first assumes the population to be partitioned into two sub-groups
(S = 2) and the second into three subgroups (S = 3).3 As before, we conduct our
analysis both by including all rounds of the experiment and by focusing on the last
five repetitions only.

[Table 3 about here]

We find strong evidence of heterogeneity. Focusing on the analysis across all
rounds, according to the model with two sub-groups, a subject is associated with
α1 = 0 with probability 0.66 and with α2 = 0.53 with probability 0.34. Results

3We have also estimated a model with S = 4. However, adding a fourth sub-group does not
significantly improve the goodness of fit of the model compared to the specification with S = 3.In
particular, with S = 4, the point estimates for the model with all periods are: µ = 21.81, α1 = 0,
α2 = 0.38, α3 = 0.61, α4 = 1.04, γ1 = 0.39, γ2 = 0.42, γ3 = 0.09.
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are even sharper in the model with three subgroups: in this case α1 = 0 and the
two other α−parameters are strictly positive: α2 = 0.43 and α3 = 1.04. Subjects
are associated with these values with probabilities 0.41, 0.50 and 0.09, respectively.
Thus, in the more parsimonious model, the majority of subjects contribute in a
way that is compatible with the preference for (group) efficiency hypothesis. These
proportions are in line with findings of previous studies (Andreoni, 1995; Houser and
Kurzban, 2002; Brandts and Schram, 2001) in which, aside from confusion, social
preferences explain the behavior of about half of the experimental population.

Allowing for heterogeneity across subjects reduces the estimated randomness in
subjects’ contributions: the value of µ reduces from 41.59 in specification (3) of
the model with homogeneous population, to 28.50 and 22.14 in the model with
two and three subgroups, respectively. According to a likelihood-ratio test, both
the models with S = 2 and S = 3 fit the data better than the (unconstrained)
specification of the model with homogeneous subjects (for the model with S = 2,
LR = 117.25; Pr {χ2(2) > LR} < 0.01; whereas for the model with S = 3, LR =
174.66; Pr {χ2(4) > LR} < 0.01). Moreover, adding an additional subgroup to the
model with S = 2, significantly increases the goodness of fit of the specification
(LR = 57.42; Pr {χ2(2) > LR} < 0.01). As before, all these results remain qualita-
tively unchanged when we control for learning processes and we focus on the last 5
experimental rounds.

In order to check for the robustness of our results in table (3), we have also
estimated additional specifications accounting for heterogeneity in both concerns for
(group) efficiency and noise in subjects’ behaviors. Although the log-likelihood of the
model with both sources of heterogeneity significantly improves in statistical terms,
the estimated values of the α−parameters remain qualitatively the same of those
reported in the third column of table (3).

5 Conclusions

Is over-contribution in linear public good experiments explained by subjects’ pref-
erence for (group) efficiency or does it rather simply reflect their natural attitude
to make errors? In order to answer this fundamental question, we have built and
estimated a quantal response equilibrium model in which, in choosing their contri-
butions, subjects are influenced by both a genuine concern for (group) efficiency and
a random noise in their behavior.

In line with other studies, we find that both concerns for (group) efficiency and
noise in behaviors play an important role in determining subjects’ contributions.
However, assessing which of these two behavioral hypotheses is more relevant in ex-
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plaining contributions strongly depends on the degree of cross-subject heterogeneity
admitted by the model. Indeed, by estimating a model with homogeneous subjects,
the parameter capturing concerns for (group) efficiency vanishes while noise in be-
havior entirely accounts for over-contribution. A different picture emerges when we
allow the subjects to be heterogeneous in their concerns for efficiency. By estimating
a model in which the population is partitioned into three subgroups that differ in
the degree of concerns for efficiency, we find that the most of the subjects contribute
in a way that is compatible with the preference for (group) efficiency hypothesis. A
formal likelihood-ratio test confirms the supremacy of the QRE model with three
subgroups over the other specifications.

Previous studies (Andreoni, 1995; Palfrey and Prisbrey, 1996, 1997; Brandts and
Schram, 2001; Houser and Kurzban, 2002; Goeree et al. 2002) tried to disantangle
the effects of noise from other-regarding preferences mainly by manipulating the
experimental design. Our approach adds a theorethical foundation in the form of an
equilibrium analysis. In contrast to studies which focus mostly on (direct) altruism,
we follow Corazzini et al. (2010) and allow for preference for efficiency. Our results
are in line with the literature in the sense that we also conclude that a combination
of noise and social concerns play a role. Our results, however, are directly supported
by a sound theorethical framework proven valid in similar settings (e.g., Goeree and
Holt, 2005).

Recent studies (Fischbacher and Gächter, 2006; Erlei, 2008) have emphasized the
importance of admitting heterogeneity in social preferences in order to better explain
experimental evidence. In this paper we show that neglecting heterogeneity in sub-
jects’ social preferences may lead to erroneous conclusions on the relative importance
of the love for (group) efficiency hypothesis with respect to the confusion argument.
Indeed, as revealed by our analysis, the coupling of cross-subject heterogeneity in
concerns for (group) efficiency with noise in the decision process seems to be the
relevant connection to better explain subjects’ contributions.
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Appendix A

Table (A1) shows the Maximum Likelihood value of α and the log-likelihood accord-
ing to equation (5) as µ decreases from 1000 to 0.4. As shown by the table, for high
values of µ the estimated value of α is 0. When µ is equal to 10, the estimated value
of alpha is 0.50. Moreover, for µ lower than 2.00, the estimated value of α is 0.61.
For the specification tests presented in section (4), we set µ = 1. This is a sufficiently
low value of µ in order to generate a noisy version of the base model. Two arguments
indicates why this choice is valid. First, for a range of values including µ = 1, the
estimated α is stable. Moreover, since the log-likelihood of a model with α = 0.61
and µ = 1 is higher than that corresponding to a model with µ=0.4 (and similarly
for α = 0.64), the choice any µ lower than 1 for the benchmark value would only
reinforce the results of section (4). More specifically, both likelihood-ratio statistics
comparing specifications (1) with specifications (2) and (3) of tables (1) and (2)
would increase.



Table A1

µ α log-likelihood
1000.00 0 −3637.64
500.00 0 −3591.79
333.33 0 −3548.7
250.00 0 −3508.34
200.00 0 −3470.67
166.67 0 −3435.64
142.86 0 −3403.19
125.00 0 −3373.25
111.11 0 −3345.76
100.00 0 −3320.64
90.91 0 −3297.8
83.33 0 −3277.17
76.92 0 −3258.65
71.43 0 −3242.16
66.67 0 −3227.61
62.50 0 −3214.93
58.82 0 −3204.01
55.56 0 −3194.79
52.63 0 −3187.18
50.00 0 −3181.1
40.00 0 −3171.22
30.30 0.14 −3192.52
20.00 0.33 −3247.22
10.00 0.50 −3444.42
9.09 0.52 −3488.26
8.00 0.53 −3555.57
7.04 0.55 −3634.45
5.99 0.56 −3753.67
5.00 0.57 −3916.89
4.00 0.58 −4173.35
3.00 0.59 −4615.92
2.00 0.60 −5547.35
1.00 0.61 −8506.13
0.90 0.61 −9181.67
0.80 0.61 −10032.07
0.70 0.61 −11133.38
0.60 0.61 −12612.63
0.50 0.61 −14699.13
0.40 0.61 −17852.64

This table reports Maximum Likelihood esti-
mates of α for selected values of µ (see equa-
tion (5)). The last column reports the corre-
sponding log-likelihood value.


